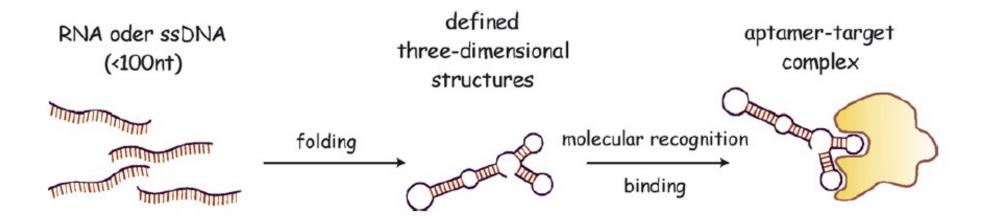
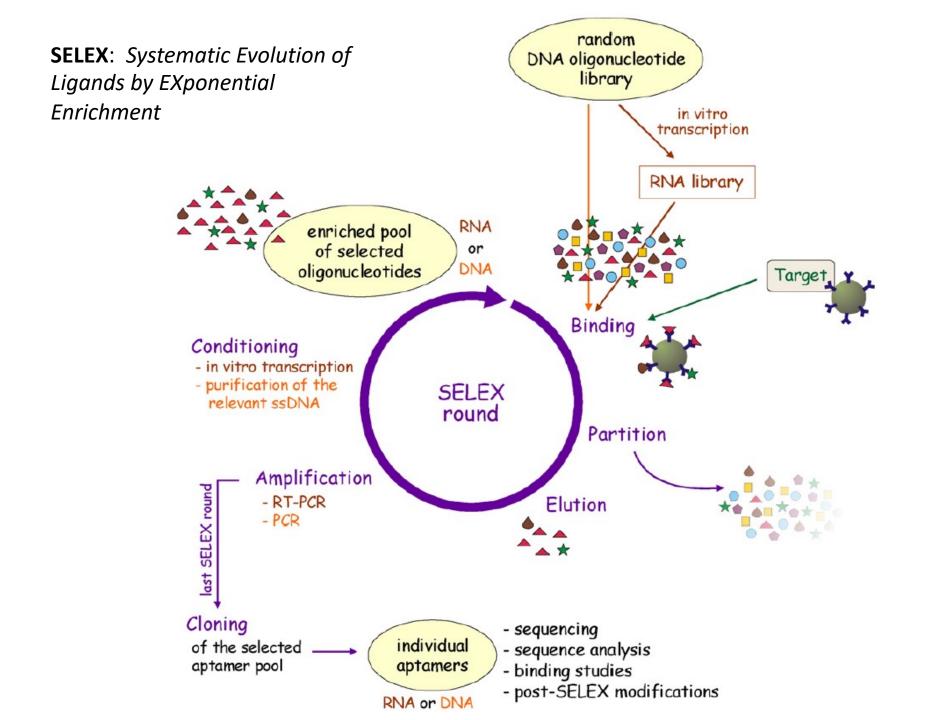
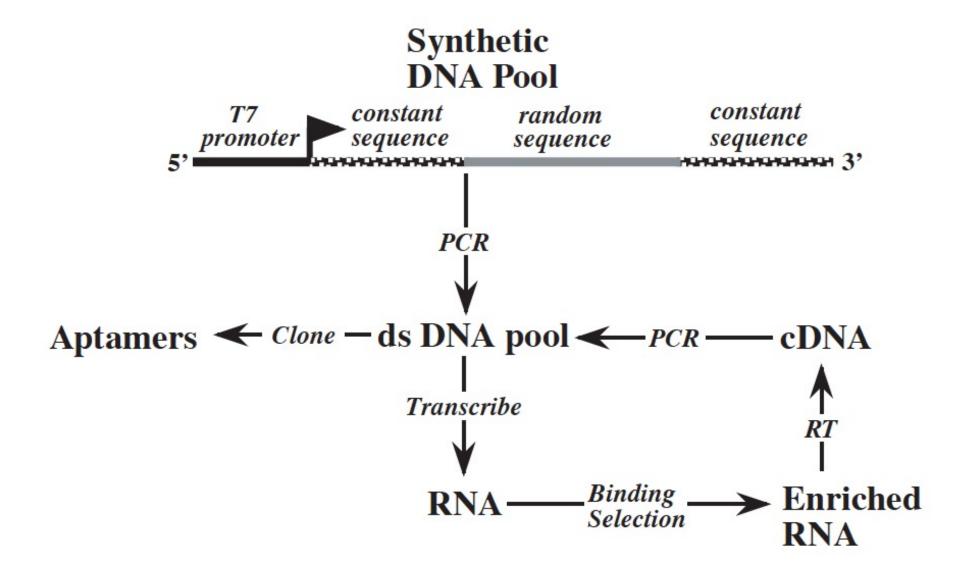
Chemical Probes for Bioimaging


Part 3: RNA AND DNA IMAGING


Kai Johnsson


Department of Chemical Biology
Max Planck Institute for Medical Research, Heidelberg

Institute of Chemical Sciences and Engineering EPFL, Lausanne

Single-stranded RNA and DNA can fold into defined three-dimensional structures that can bind molecules and catalyze reactions

385 R. Stoltenburg et al./Biomolecular Engineering 24 (2007) 381-403 Table 1 (Continued) Target for aptamer selection Type of aptamer $K_{\rm D}$ References Ricin toxin DNA 58-105 nmol/L Tang et al. (2006) Cholic acid DNA 5-67.5 µmol/L Kato et al. (2000) 4,4'-Methylenedianiline RNA 0.45-15 µmol/L Brockstedt et al. (2004) Dopamine RNA 2.8 µmol/L Mannironi et al. (1997) Cocaine DNA n.s.ª Stojanovic et al. (2000) Nucleotides and derivatives Adenine RNA 10 µmol/L Meli et al. (2002) ATP (adenosine) RNA 0.7-50 µmol/L Sassanfar and Szostak (1993) Adenosine/ATP DNA 6 µmol/L Huizenga and Szostak (1995) ATP RNA 4.8-11 µmol/L Sazani et al. (2004) Xanthine RNA 3.3 µmol/L Kiga et al. (1998) 10 µmol/L cAMP RNA Koizumi and Breaker (2000) Cofactors Coenzyme A RNA n.s.a Saran et al. (2003) Cyanocobalamin RNA 88 nmol/L Lorsch and Szostak (1994) Riboflavin RNA 1-5 µmol/L Lauhon and Szostak (1995) FMN RNA 0.5 µmol/L Burgstaller and Famulok (1994) FAD RNA 137-273 µmol/L Burgstaller and Famulok (1994) NAD RNA n.s.ª Burgstaller and Famulok (1994) RNA 2.5 µmol/L Lauhon and Szostak (1995) S-adenosyl methionine RNA n.s.a Burke and Gold (1997) RNA 0.1 µmol/L Gebhardt et al. (2000) S-adenosyl homocysteine Biotin RNA 5 µmol/L Wilson et al. (1998) and Wilson and Szostak (1995) Nucleic acids TAR RNA element of HIV-1 DNA 50 nmol/L Boiziau et al. (1999) RNA 20-50 nmol/L Duconge and Toulme (1999) DNA 50 nmol/L Sekkal et al. (2002) Yeast phenylalanine tRNA RNA 12-26 nmol/L Scarabino et al. (1999) E.coli 5S RNA RNA 6-12 µmol/L Ko et al. (1999) RNA 3 µmol/L Ko et al. (2001) Amino acids L-Arginine RNA 330 nmol/L Geiger et al. (1996) DNA \sim 2.5 mmol/L Harada and Frankel (1995) L-Citrulline RNA 62-68 µmol/L Famulok (1994) L-Valine RNA 12 mmol/L Majerfeld and Yarus (1994) RNA L-Isoleucine 1-7 mmol/L Lozupone et al. (2003) RNA 200-500 μmol/L Majerfeld and Yarus (1998) D-Tryptophan RNA 18 µmol/L Famulok and Szostak (1992) L-tyrosinamide DNA 45 µmol/L Vianini et al. (2001) L-histidine RNA 8-54 µmol/L Majerfeld et al. (2005) Carbohydrates Cellobiose DNA 600-nmol/L Yang et al. (1998)

0.085-10 nmol/L

4.9 µmol/L

≤300 nmol/L

180 nmol/L

 \sim 100 nmol/L

 \leq 300 nmol/L

25-65 µmol/L

5-30 nmol/L

300-400 nmol/L

2-3 nmol/L

1 µmol/L

n.s.a

n.s.a

n.s.ª

Jeong et al. (2001)

Masud et al. (2004)

Lato et al. (1995)

Kwon et al. (2001)

Wallis et al. (1995)

Schürer et al. (2001)

Berens et al. (2001)

Burke et al. (1997)

Tuerk and Gold (1990)

Wang and Rando (1995)

Wallace and Schroeder (1998)

Lato et al. (1995) and Lato and Ellington (1996)

Srisawat et al. (2001)

Fukusaki et al. (2000)

RNA

DNA

DNA

DNA

RNA

Sialyl Lewis X

Sialyllactose

Kanamycin A

Kanamycin B

Streptomycin

Lividomycin

Tetracycline

Moenomycin A

Chloramphenicol

Peptides and proteins T4 DNA polymerase

Neomycin Tobramycin

Sephadex

Chitin

Antibiotics

∞ ∞ 2 9 \vdash http://www.ncbi.nlm.nih.gov/pubmed,

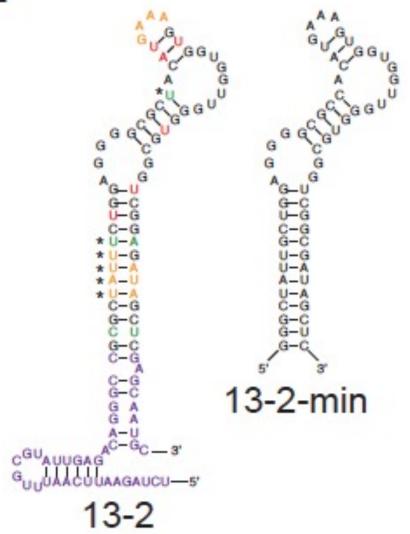
RNA Mimics of Green Fluorescent Protein

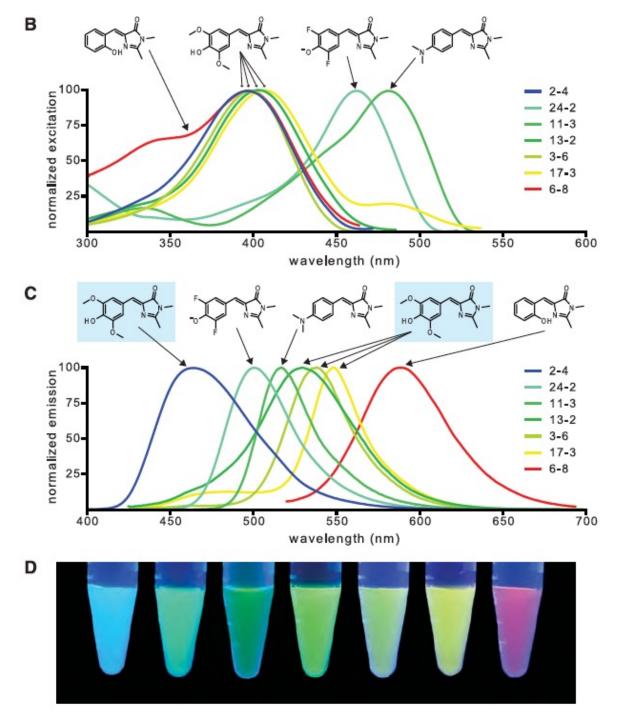
Jeremy S. Paige, Karen Y. Wu, Samie R. Jaffrey, Astrony

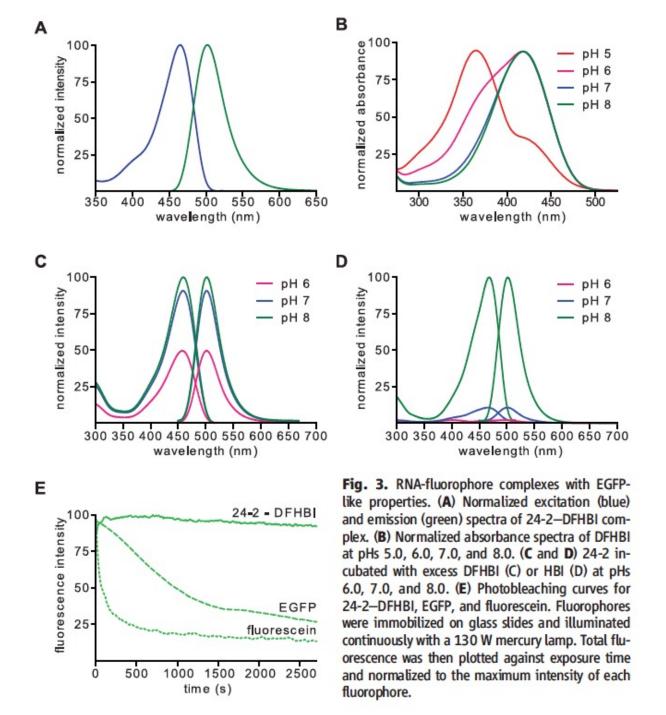
Green fluorescent protein (GFP) and its derivatives have transformed the use and analysis of proteins for diverse applications. Like proteins, RNA has complex roles in cellular function and is increasingly used for various applications, but a comparable approach for fluorescently tagging RNA is lacking. Here, we describe the generation of RNA aptamers that bind fluorophores resembling the fluorophore in GFP. These RNA-fluorophore complexes create a palette that spans the visible spectrum. An RNA-fluorophore complex, termed Spinach, resembles enhanced GFP and emits a green fluorescence comparable in brightness with fluorescent proteins. Spinach is markedly resistant to photobleaching, and Spinach fusion RNAs can be imaged in living cells. These RNA mimics of GFP provide an approach for genetic encoding of fluorescent RNAs.

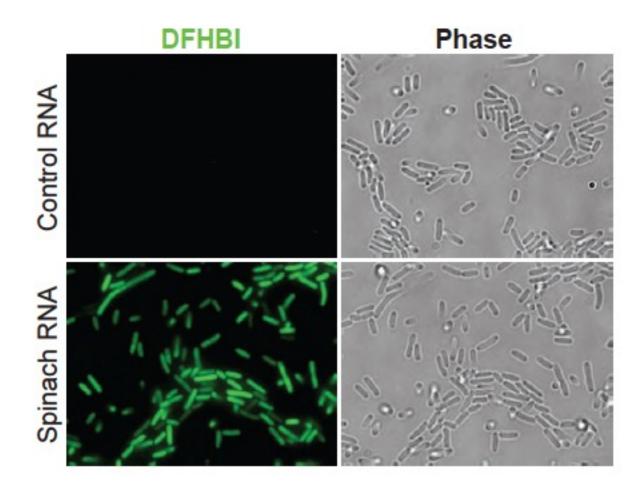
Fig. 1. RNA aptamers switch on the fluorescence of GFP-like fluorophores. (**A**) Structures of HBI (green), in the context of GFP, and DMHBI. (**B**) 13-2 enhances the fluorescence of DMHBI. Solutions containing DMHBI, 13-2 RNA, DMHBI with 13-2 RNA, or DMHBI with total HeLa cell RNA were photographed under illumination with 365 nm of light. The image is a montage obtained under identical image-acquisition conditions.

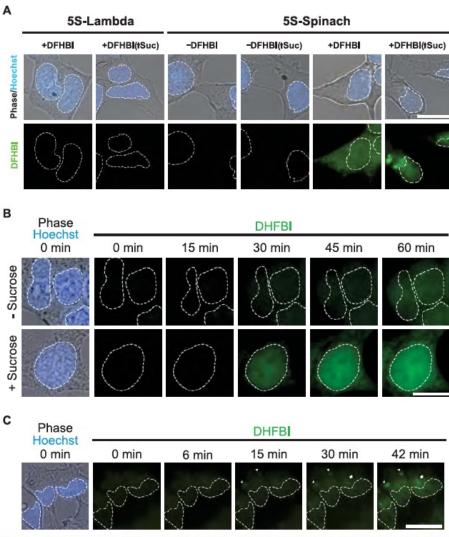
$$\frac{N\text{-acetylglycine}}{\text{NaOAc, Ac}_2\text{O}} = \frac{1}{\text{NaOAc, Ac}_2\text{O}} = \frac{40\% \text{ aq. CH}_3\text{NH}_2}{\text{K}_2\text{CO}_3, \text{ EtOH}} = \frac{40\% \text{ aq. CH}_3\text{NH}_2}{\text{HO}} = \frac{1}{\text{AcO}} = \frac{1}{\text{NaOAc}_3\text{N$$


Scheme 1


Table S1 Photophysical and binding properties of RNA-fluorophore complexes


Fluorophore	Excitation maximum (nm)	Emission maximum (nm)	Extinction coefficient (M ⁻¹ cm ⁻¹) ^a	Fluorescence quantum yield	K _D	Brightness ^b
Aequorea GFP ^c	395	508	27,600	0.79	iā.	100
EGFP ^c	489	508	55,000	0.60	1.7	151
HO	394	487	23,336	0.0005	-	0.05
DMHBI						
2-4	397	464	21,536	0.10	N.D. ^d	6
13-2	398	529	23,391	0.06	464 nM	12
13-2-min	398	529	23,391	0.11	N.D.	12
3-6	398	537	25,300	0.05	406 nM	6
17-3	405	547	18,127	0.09	N.D.	7
N N N N N N N N N N N N N N N N N N N	447	519	14,329	0.003	2	0.2
DMABI 11-3	489	512	18,743	0.05	N.D.	4
OHN=	399	461	10,943	0.0005	12	0.02
2-HBI 6-8	396	588	10,714	0.004	N.D.	0.2
F N=	405	498	11,864	0.0007	1/2	0.04
DFHBI 24-2 (Spinach)	469	501	24,271	0.72	537 nM	80


^aExtinction coefficients for fluorophores alone were measured at a pH in which all species were in the phenolic form except for DFHBI which was measured in its phenolate form. RNA-fluorophore complex extinction coefficients were all measured at pH 7.4. ^bBrightness (extinction coefficient × quantum yield) is reported relative to *Aequorea* GFP. ^cSee reference 40. ^dN.D. = not determined.


Е

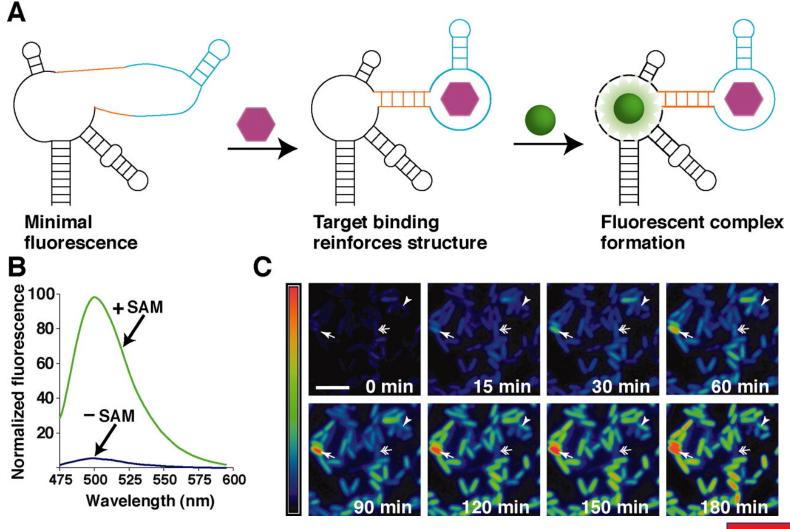
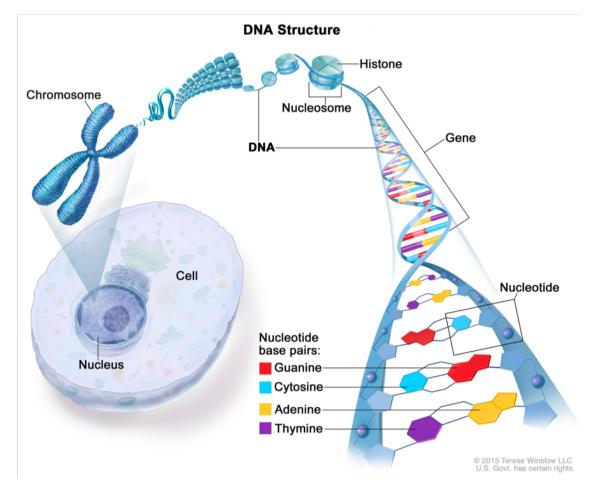


Fig. 4. Live-cell imaging of Spinach fusion RNAs. (**A**) Live-cell imaging of Spinach-tagged 5*S* RNA. Fluorescence and phase images of HEK293 T cells expressing 5*S* tagged with either Spinach or Lambda, a control RNA. Fluorescence is detected in 5*S*-Spinach—expressing cells in the presence of 20 μM DFHBI, with granule formation present in cells treated with 600 mM sucrose for 30 min (↑Suc). White dashed lines indicate nuclear borders assessed by means of Hoescht 33342 staining. (**B**) 5*S*-Spinach RNA induction in response to stress. 5*S*-Spinach—expressing HEK293 T cells were pretreated with 30 nM ML-60128 for 16 hours and then treated with vehicle or 600 mM sucrose for 60 min. Treatment of cells with sucrose resulted in a rapid induction of 5*S*-Spinach RNA and an increase in total 5*S*-Spinach levels compared with control cells. (**C**) 5*S*-Spinach RNA localization into granules. 5*S*-Spinach—expressing HEK293 T cells were stimulated with 600 mM sucrose in order to monitor the rate of formation of 5*S*-Spinach—containing granules. Arrowheads indicate granules that formed earliest, and arrows indicate granules that developed later during the time course of treatment. Scale bar, 10 μm.

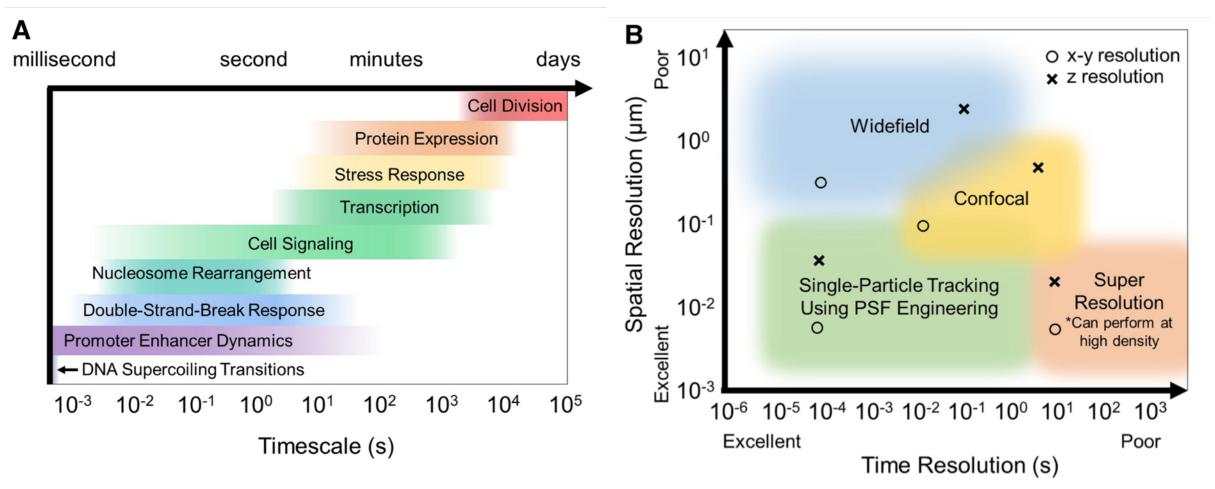

Fig. 1 Imaging SAM in living cells with RNA. (A) The sensor RNA comprises Spinach (black), a transducer (orange), and a target-binding aptamer (blue).

Jeremy S. Paige et al. Science 2012;335:1194

Goal of DNA imaging:

Time-resolved, 3D positions of the entire genome, with information on sequence and epigenetic modification.

https://www.cancer.gov/aboutnci/organization/ccg/research/structuralgenomics/tcga, 29/5/2020


Outline

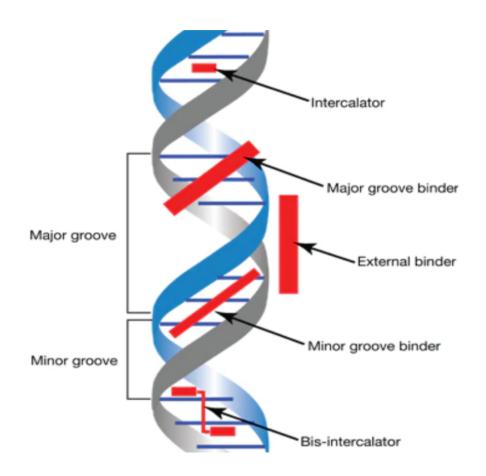
- 1. Why should we study DNA in cells?
- 2. DNA labeling methods:
 - a) DNA dye staining
 - b) Unnatural nucleosides and pro-nucleotides
 - c) CASFISH a CRISPR-dCas9 method
- 3. Paper

Rieder et al. – Alkene-Tetrazine Ligation for Imaging Cellular DNA

1. DNA is involved in many cellular processes that occur on a time scale that can be observed with common imaging techniques

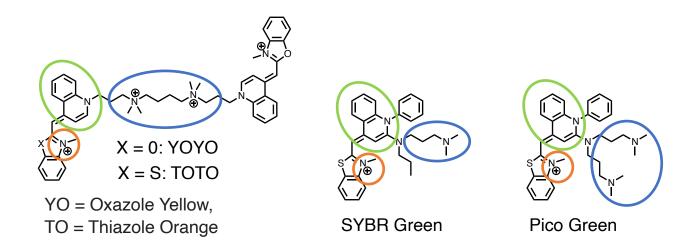
1. Questions that could be addressed with DNA imaging

- To what extent does the structuring of chromatin in topological regions (e.g., chromatin domains)
 contribute to nuclear functioning? On what length scales does this structuring occur?
- How is it dynamically organized e.g., during the cell cycle or during DNA replication or transcription?
- How are the dynamical processes themselves responsible for the possibly induced structural changes of chromatin?



1. Key applications of DNA imaging

Application	Labeling method		
Cell viability test	Cell impermeable DNA stain		
Imaging chromatin	Cell permeable DNA stain		
Cell cycle analysis, DNA replication and repair	DNA stain, Unnatural nucleosides or pro-nucleotides		
Tracking repetitive loci	DNA binding proteins (Zinc finger proteins)		
Tracking specific, nonrepetitive loci	DNA binding proteins (CRISPR-dCas9 method)		


- Intercalating between base pairs
 - Cyanine monomers and dimers (Mono- and bisintercalator)
 - Phenanthridines and acridines
- Minor groove binder
 - Indoles and imidazoles

https://www.thermofisher.com/de/de/home/references/molecular-probes-the-handbook/nucleic-acid-detection-and-genomics-technology/nucleic-acid-stains.html, 29/5/20

MAX-PLANCK-GESELLSCHAFT

Cyanine Dyes:

- Intercalator
- Interaction with phosphate backbone
- Interaction with DNA minor groove

Properties:

- High turn-on upon DNA binding
- Mostly cell impermeable

Applications:

- Ultrasensitive nucleic acid detection and quantification in solution or gels
- Dead-live stain to determine cell cytotoxicity

Classical Intercalators: phenanthrines and acridines

$$H_2N$$
 H_2N
 $B_r\Theta$

H₂N
$$\bigoplus$$
 \bigoplus \bigoplus N \bigoplus N \bigoplus \bigoplus N \bigoplus N \bigoplus \bigoplus N \bigoplus

Ethidium bromide (EtBr)

Propidium iodide (PI)

× HCI

Acridine orange

Properties:

- EtBr and PI are potent mutagens.
- Acridine orange has an emission maximum at
 525 nm when bound to DNA that is shifted to
 650 nm when bound to RNA.

Applications:

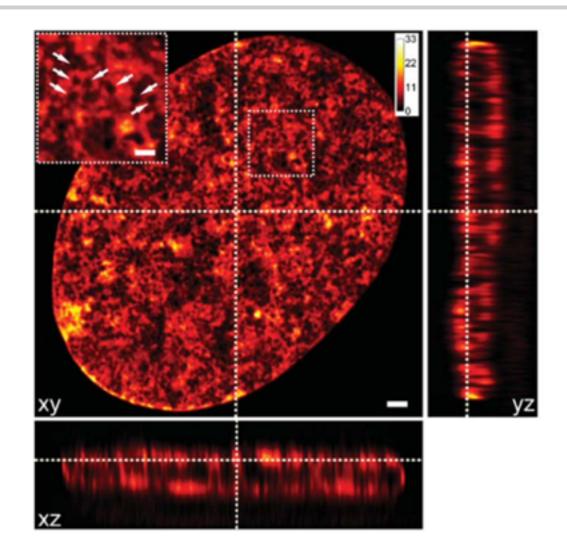
- PI is a commonly used as chromosome and nuclear counterstain e. g. in flow cytometry.
- Acridine Orange is a dual-fluorescence nucleic acid stain that can be used for RNA/DNA discrimination measurements.

Minor groove binders: Indoles and Imidazoles

$$H_2N$$
 H_2N
 H_2N

DAPI

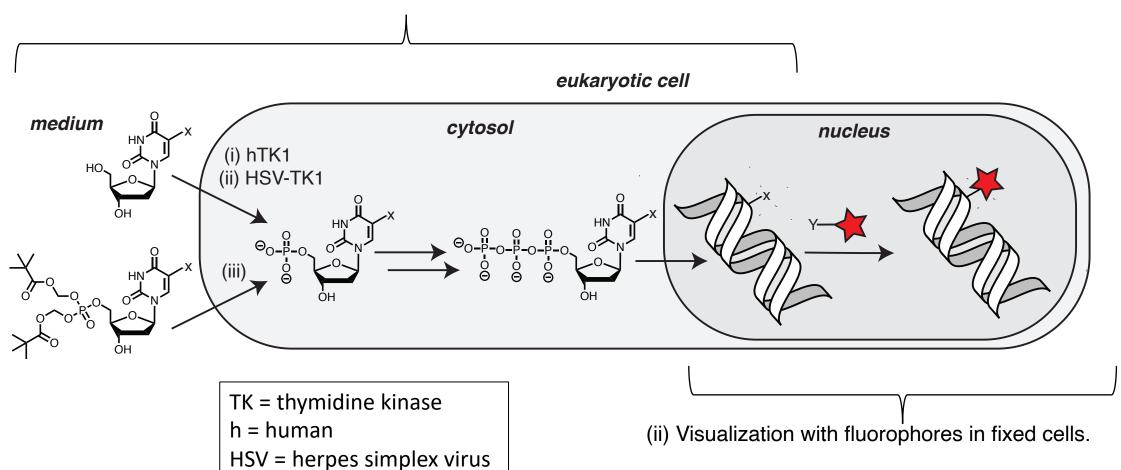
Properties:


- AT-selective.
- DAPI is cell-impermeable whereas
 Hoechst33342 and SiR-Hoechst are cell peremable.

Applications:

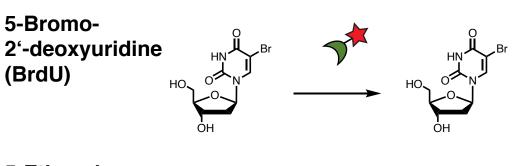
- Nuclear counterstains for fluorescence microscopy.
- Cell cycle analysis for flow cytometry or fluorescence microscopy.

2. DNA labeling methods: a) DNA dye staining can give super-resolved images of chromatin

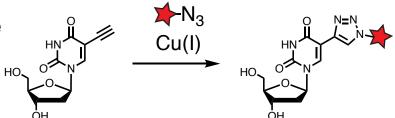

STED nanoscopy images of nuclei in living fibroblast stained 5-610CP-Hoechst. Arrows indicate heterochromatin exclusion zones (HEZs). Scale bar: 1 mm in the large image and 0.5 mm in the inset.

$$\bigoplus_{N} \bigvee_{N} \bigvee_{H} \bigvee_{N} \bigvee_{N$$

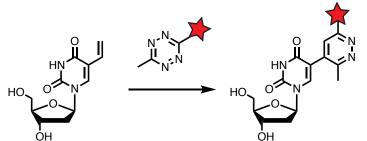
Chem. Sci. **2019**, *10*, 1962–1970.



(i) Metabolic processing of nucleoside or pro-nucleotide analogues in living cells.



2. DNA labeling methods: b) Labeling newly synthesized DNA: Unnatural nucleosides

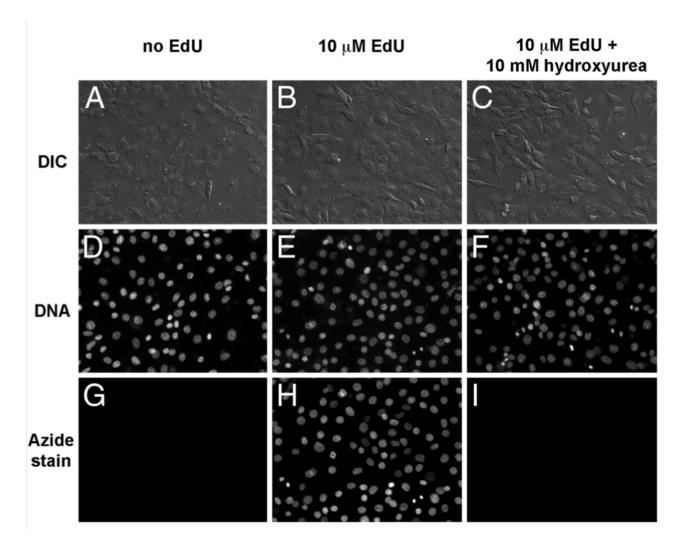

Immunostaining with antibody

5-Ethynyl-2'-deoxyuridine (EdU)

Cupper-catalyzed azide-alkyne cycloaddition (CuAAC) $k \sim 10 - 200 \text{ M}^{-1} \text{ s}^{-1}$

5-Vinyl-2'-deoxyuridine (VdU)

Inverse electron-demand Diels Alder reaction (iEDDA)


 $k_{VdU} \sim 0.021~M^{-1}~s^{-1}$, (other dienophiles: $k_{tetrazines} \sim 1~-~10^4~M^{-1}~s^{-1}$)

Hum Genet **1986**, *72*, 129-132. Proc Natl Acad Sci USA **2008**, *105*, 2415-20. Angew Chem Int Ed Engl **2014**, *53*, 9168-72. ACS Chem. Biol. **2014**, *9*, 16–20.

- Postsynthethic modification of oligonucleotides using Cu(I) catalyzed azide-alkyne cycloaddition was first demonstrated by Carell in 2006.
- Applications in mammalian cells were published two years later in 2008.

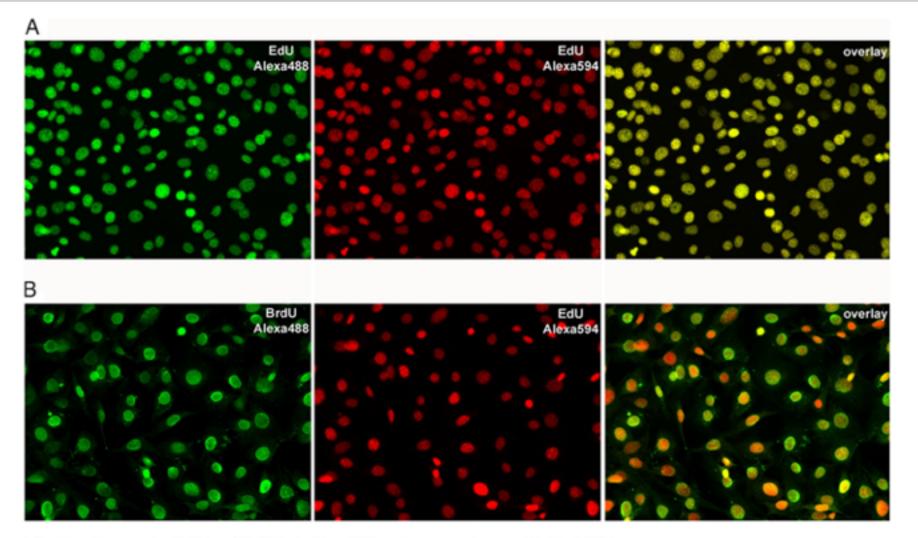


Fig. 2. Detection of EdU incorporated into the DNA of cultured NIH 3T3 cells (A–M) and HeLa cells (N–P) by fluorescence microscopy. NIH 3T3 cells were incubated in media without EdU (A, D, G, J, and L), media supplemented with 10 μ M EdU (B, E, and H) or media with 10 μ M EdU and 10 mM hydroxyurea to block DNA synthesis (C, F, I, K, and M). In A–M, the cells were fixed and then reacted with 10 μ M Alexa568-azide (Fig. 1C, compound 2) for 10 min. The cells were then counterstained with Hoechst to reveal cellular DNA, washed, and imaged by fluorescence microscopy and differential interference contrast (DIC). Note the strong specific and low nonspecific azide stain in the presence (H) and absence (G) of EdU, respectively. Not all nuclei in H are labeled after overnight incubation with EdU, suggesting that only cells that went through S phase became labeled. Blocking DNA replication with hydroxyurea abolishes EdU incorporation almost completely (I).

 EdU incorporation can be diminished with the DNA synthesis inhibitor hydroxyurea.

 EdU signals colocalize with BrdU signals.

Fig. 3. Reproducibility of EdU labeling (A) and comparison with BrdU (B)

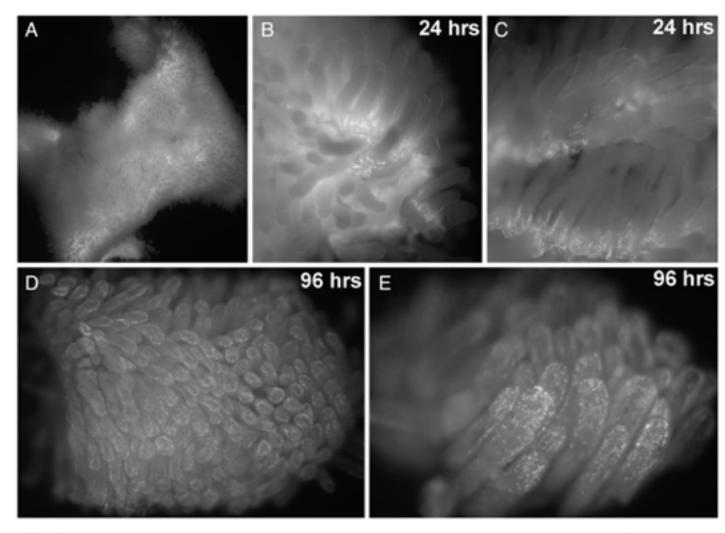
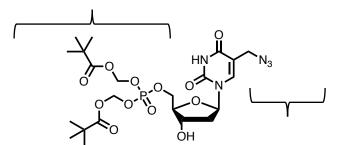


Fig. 5. Exploring cell proliferation and tissue dynamics in animals using EdU.

 Whole-mount fluorescent images of mouse small intestine, stained to detect EdU incorporation.



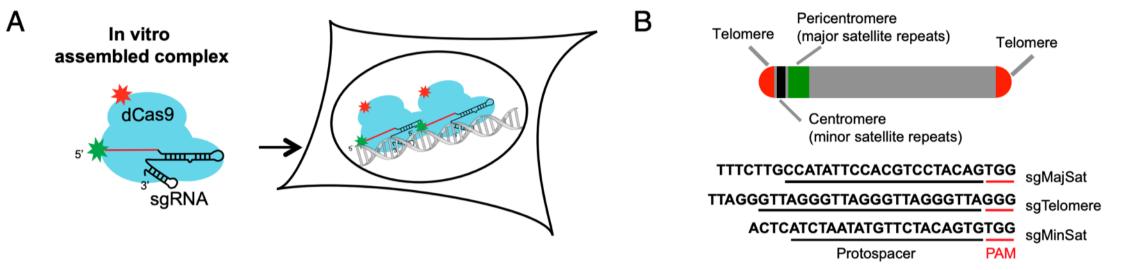
Confocal images of HeLa cells treated with EdU (10 μ M, 16 h) before PFA fixation and labeling with Alexa647-azide and Hoechst33342, scale 25 μ m.

2. DNA labeling methods: b) Labeling newly synthesized DNA: Unnatural pro-nucleotides

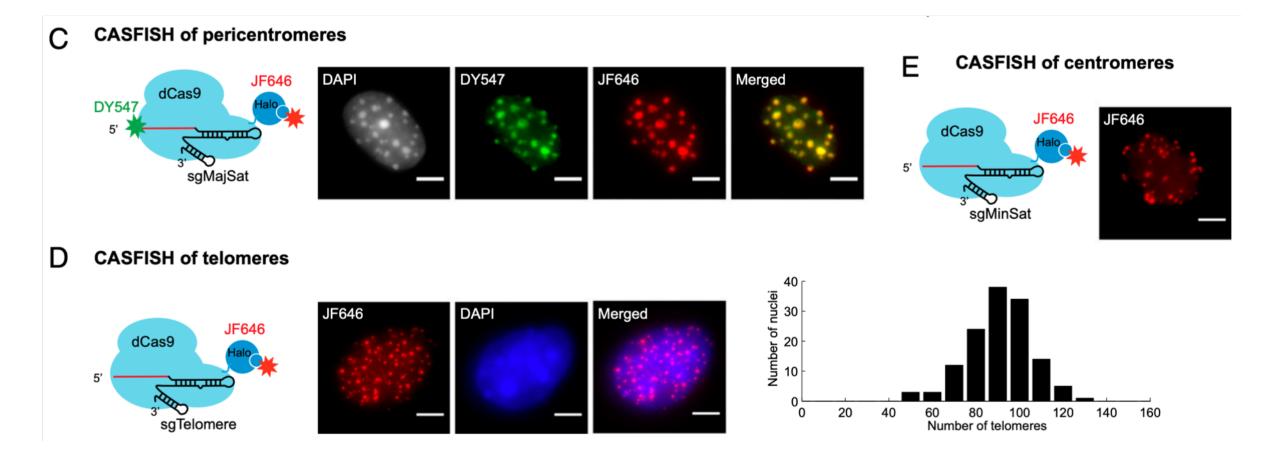
Pivaloyloxymethyl phosphotriester (=POM) is cleaved by endogenous esterases

More efficient incorporation into DNA through protected monophosphate.

→ First phosphorylation is critical for incorporation into DNA.


Bio-orthogonal handle for strain-promoted azide-alkyne cycloaddition (SPAAC) $k \sim 0.01 - 1 \text{ M}^{-1} \text{ s}^{-1}$

→ The larger the handle, the less likely to be a substrate of endogenous enzymes.

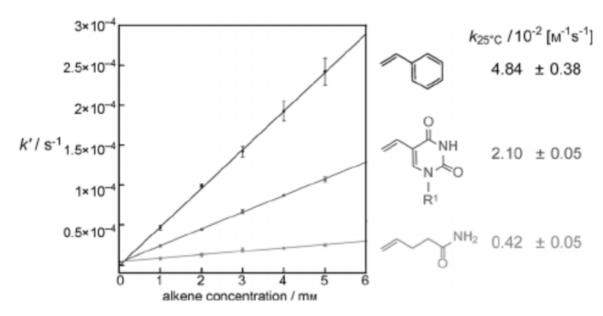

2. DNA labeling methods: c) CASFISH – a CRISPR-dCas9 method for fixed cells

- In vitro assembled dCas9/sgRNA fluorescently labels genomic DNA in cells
 - System is derived from Fluorescence-in situ hybridization (FISH), but no DNA denaturation needed.
 - (i) CRISPR (clustered regularly interspaced short palindromic repeats) -dCas9 (nuclease-deficient caspase 9) mutant fused HaloTag labelled with JF646 (A)
 - (ii) sgRNA that is targeting the desired sequences in the genome (B)

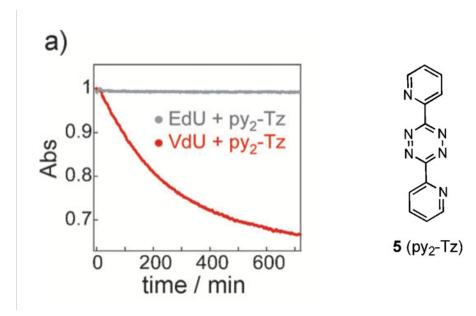
2. DNA labeling methods: c) CASFISH – a CRISPR-dCas9 method for fixed cells

3. Paper: a) VdU: Rieder et al. - Alkene-Tetrazine Ligation for Imaging Cellular DNA

Angewandte Communications


DOI: 10.1002/anie.201403580

Alkene-Tetrazine Ligation for Imaging Cellular DNA**


Ulrike Rieder and Nathan W. Luedtke*

https://onlinelibrary.wiley.com/doi/epdf/10.1002/anie.201403580

3. Paper: a) VdU reacts with pyridyl-tetrazine but not EdU

Figure 1. Pseudo-first-order reaction rates (k') versus alkene concentration for the consumption of tetrazine **5** (0.1 mm) in a 1:1 (ν/ν) mixture of methanol and water at 25 °C. The slope of each linear regression provides the rate constant k. $R^1 = 2'$ -deoxyribose.

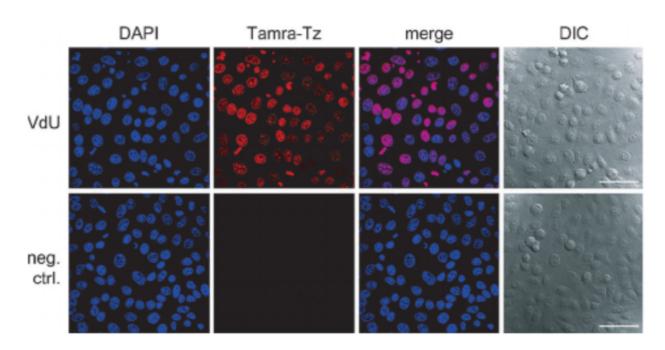


Figure 4. a) The consumption of tetrazine **5** (0.1 mm) according to normalized absorbance changes at 530 nm in the presence of 5 mm of EdU or VdU in a 1:1 (ν/ν) mixture of methanol and water at 25 C.

→ The VdU ligation is bio-orthogonal to EdU.

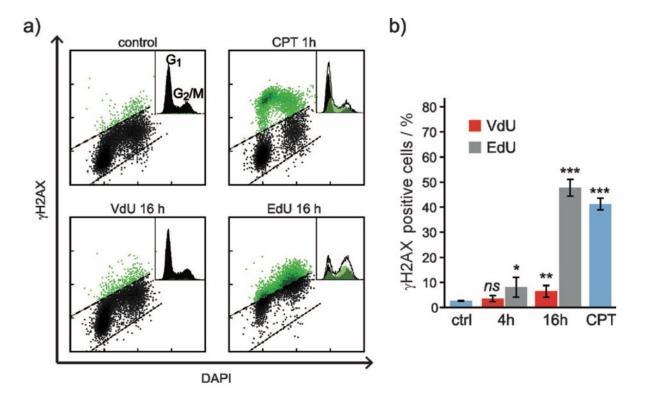

3. Paper: a) VdU is incorporated into DNA and can be visualized with Tamra-Tz

Figure 2. Bioorthogonal invDA ligation of VdU in newly synthesized DNA upon the addition of the fluorescent tetrazine Tamra-Tz. HeLa cells were treated with 30 μM VdU for 16 h, followed by fixation, DNA denaturation, and incubation with 5 μM Tamra-Tz for 4 h. Total cellular DNA was stained with DAPI. The negative control (neg. ctrl.) samples received identical treatment but were not incubated with VdU prior to staining. Scale bars: 50 μm. DIC = differential interference contrast image, merge = overlay of Tamra-Tz and DAPI channels.

3. Paper: a) VdU is less toxic than EdU

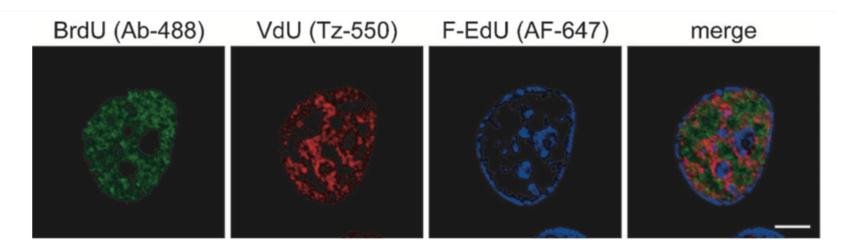
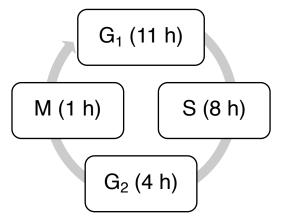


Figure 3. Flow cytometry analysis of γH2AX versus DAPI staining of HeLa cells treated with 30 μM VdU or 10 μM EdU for 16 h. These concentrations were selected based upon the equivalent staining frequencies and intensities observed for EdU and VdU (Figure 4 b, c, and Figure S15, 16). γH2AX positive cells were detected by using a phosphospecific antibody. a) The dot plots illustrate γH2AX abundance versus the total cellular DNA content of each cell. The insets display histograms of the DNA content (from the cell cycle phases $G_0/_1$ to G_2/M) versus cell count. The dashed lines show the thresholds used for defining yH2AX positive/negative cells based on the control. For a positive control, cells were treated for 1 h with camptothecin (CPT, 0.5 μм), which causes DNA damage. [21] b) A graphical representation of results where n = 5, *P < 0.02, **P < 0.002, ***P < 0.0001, ns = not significant, compared to the control. For 4 h time points and U2OS cells see Figure S11.

- → VdU less toxic as phosphorylation of histones H2AX is less pronounced.
- → γH2AX formation is associated with DNA strand breakage.



3. Paper: a) VdU can be used for multicolor imaging of newly synthesized DNA

Figure 5. Visualizing the progression of the S-phase in a single cell by using BrdU (30 μM, 1^{st} pulse, green), VdU (30 μM, 2^{nd} pulse, red), and F-ara-EdU (10 μM, 3^{rd} pulse, blue). HeLa cells were incubated for 2 h 45 min with each nucleoside and washed for 15 min with fresh media in between nucleoside treatments. After fixation and DNA denaturation, the cells were stained with Tamra-Tz (red), BrdU antibody (green), and AF-azide (blue). Scale bars: 5 μm. See Figure S17 for additional examples.

Cell cycle:

